Week 11

EMT 101 – Engineering Programming

Dr. Farzad Ismail

School of Aerospace Engineering Universiti Sains Malaysia Nibong Tebal 14300 Pulau Pinang

Extensive Library Package

One of the best features in MATLAB is that it has a more extensive library package compared to C++

A MATLAB code can solve almost all types of matrix problems by connecting with LINPACK or EISPACK

No need to re-invent the wheel!

The next best thing in MATLAB is the library which includes various build-in plotting features

2D Plotting Commands

use text([X],[Y],'text') to include text

use line([X],[Y]) to draw lines

use quiver([X],[Y],[u],[v]) to draw vector lines

3D Plotting Commands

use plot3([X],[Y],[Z]) to plot points in 3D

use surf([X],[Y],[Z]) to draw surface plots

can also use mesh([X],[Y],[Z]) (data is in "mesh")

use image([X],[Y],[Z]) to draw surface plots

Plot Control

- Each plot can be customized from the MATLAB script
- MATLAB uses the concept of "handle" for each element in the figure
- a handle is a identification number that points to the properties associated with a figure
- common commands to use with a "handle":
- set,get,gco,gca,gcf

Handle Operators

- set: set the properties associated with the handle
- get: get all the properties of the figure pointed by the handle
- gco: get all the properties of an object in the figure
- gca: get all the properties of the axis the figure

gcf: returns the handle value

Functions in MATLAB

Similar to C++, a function is an external piece of code (outside main) which is called by the main program to perform certain tasks.

A function has an input and an output

Overall use of functions in MATLAB is very similar to C++

Function Example

Format of a function in MATLAB: function [x1, x2] = functionName(y1,y2) <body code>

The function file must be saved as functionName.m
 variables in [·] (LHS) are outputs of the function
 variables in (·) (RHS) are inputs of the function

Function Example

A function to find average value of vector x.

function ave = myAverage(x)
sumx = sum(x);
n = length(x);
ave = sumx/n;

This code must be saved as myAverage.m

Tutorial 1

The task is to estimate the area under the sine function u(x) = sin 2πx for x = [0, Pi].
 Estimate the area by dividing x into many intervals. Each interval is an area of a rectangle f (xi)\Delta xi, where \Delta xi = xi - xi-1.

Use a function to denote square area rule and another function to represent trapezoidal rule.

Tutorial 1 Solution

```
function main
clc
clear all
N=input('Enter number of interval:');
lwrlmt=0;
uprlmt=pi;
dx=(uprlmt-lwrlmt)/N;
x= (lwrlmt+dx/2):dx:(uprlmt-dx/2);
f=(sin(2*pi*x));
Squarearea=integrate(N,dx,f)
Trapezoidalarea=trapezoidal(N,dx,f)
end
```

```
function [r]=integrate(N,dx,f)
r=0;
for i=1:N
    r=r+f(i)*dx
end
end
function [t]=trapezoidal(N,dx,f)
sum=0;
```

```
for i=2:N-1
sum=sum+f(i);
end
t=(dx/2)*(f(1)+f(N)+(2*sum))
end
```

Exercise 1

Solving the beam problem in Homework 2